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Runaway electrons during disruptions )

A One of the most difficult consequences of tokamak disruptions

A Large uncertainties on RE generation on ITER

A Due to the avalanche amplification factor [Rosenbluth NF 1997], [Vallhagen JPP
2020]

A Some primary mechanisms still subject to uncertainties: tritium seed,
Compton scattering, etc.

A Currents of several MA at 10-20 MeV may be reached
A C Significant damage on PFCs if left unmitigated
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The ITER disruption and RE mitigation scheme (@)
A Based on Shattered Pellet Injection (SPI)
A 24 barrels in equatorial ports + 3 barrels in upper ports
A First line of defense:
A TQ & CQ heat loads mitigation
A CQ EM load mitigation
A RE avoidance
C Which gas mixture and quantities should be used?
)4 . - ?
C Are all.goals attainable simultaneously” Edjiiitoiial ports
A Second line of defense: S T
A In-flight RE beam energy dissipation |
S e T g barrels 12 barrels
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The JET SPI system (@)

A Installed in 2018-2019 through an
iInternational Eurofusion-US DOE-ITER-JET
Operator collaboration [Baylor NF 2019]

3 barrels: 12.5, 8, 4 mm pellet diameters
10%1-10%2 atoms per pellet (10-600 Pa.m?3)
Pellet composition:

A D,, Ne, Ar, D,+Ne, D,+Ar mixtures

A Mechanical punch for Argon pellets
A Pellet speed: 100-500 m/s, depending on

size, species

A Flight time 20-50 ms
A Independent firing of all barrels (+/- 0.2 ms)

To To Iw
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Previous results on runaway mitigation at JET

A Typical runaway scenario:

A argon injection from a disruption
mitigation valve (6 Pa.m?3)

A Limiter plasma 2

A High Z massive gas injection
accelerates the RE current decay

A Free electron density increases

collisions/dissipation
A Destabilizes the beam vertically

A Only works when the companion
plasma electron density is low

A Higher density companion plasma:
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Runaway suppression: h

Igh Z injections
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Mitigation experiments: fire a Shattered Pellet in the middle of a runaway beam
Target: ~ 600 kA runaway beam, low density companion plasma (n,, ~ 2x10%°

m-2)

Tested:
A SPI 245 Pa.m3, argon
A SPI 70 Pa.m3, argon

A SPI 422 Pa.m3, neon
A SPI 121 Pa.m3, neon

In all cases:

A Beam successfully shortened (500
ms instead of 1 s)

Linear ramp-down rate 4.8-9 MA/s
(larger with bigger pellets)

Increase of HXR & neutron rate
Vertical destabilization
Final impact with PFC heating

To Do o  I»
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Runaway suppression : SPI vs. MGI
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On the same target runaway beam: compare MGI and SPI in similar conditions.

SPI 12.5 mm (200 Pa.m3), argon:

A Beam successfully shortened.
(~500 ms instead of 1.0 s).

A Linear ramp-down rate 6.3 MA/s
MGI 280 Pa.m3, argon:

A Beam successfully shortened

A Linear ramp-down rate ~ 5.2 MA/s.

In both cases: increase of
neutron rate & HXR, vertical
destabilization, heat loads on
PFCs
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Runaway beam suppression :D, SPI Q)
Current increases shortly after SPI
A Similar observations on DIII-D [Paz- ;:’X - SPltigger | @]
Soldan PPCF 2019], Compass [Mlynar PPCF  Z os| : ! ]
2019], AUG [Pautasso NF 2020], FTU .
Neutrons and HXR drop g VN
Electron density drops to <1018 m-2 *

A Plasma recombination

Voop decreases
A Argon flushed-out |
A VUV dominated by D lines [Sridhar PhD] = obf oo

[10°s] [10°°m?]

P..q INCreases 5

Runaways disappear in a few ms “w =i
A Synchrotron emission stops - (h
A Large neutron/HXR spike _01 w
A Huge MHD burst i """ time from thermal gjfjench FS? " v
A No visible localized damage D, SPI leads to a benign terminati

Current decay similar to an ohmic CQ of the RE beam.
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Modelling the effect of D, SPI on the companion @
plasma

A Modelling the D, effect using a 1D diffusion model [Hollmann NF 2019]
A Computes densities and temperatures with radiated power as an input

Decrease of temperature is confirmed by the model, but not down to
recombination

The measured density (recombination) can only be matched if 99% of
the radiated power comes from non-thermal sources (i.e. runaways)

Ongoing effort to understand the power balance of the purged
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Runaway beam suppression: heat loads (@)

A Complete and fast (~1ms) dissipation of the runaway beam
A But no visible heat loads

A Heat loads of D,-mitigated runaway beams below the measurement
threshold of the IR camera (0.5 MJ.m? vs up 10 MJ.m for high-Z or

non-mitigated) 12 ‘
B Non-mitigated
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Two mechanisms at play:
A Large MHD instability

IRcamera (33.5 um) A Absence of RE regeneration
- synchrotronemISS|on
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Triggering the instability
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Current rises up to low q, but not
necessarily g=2 as in previous studies
[Paz-Soldan PPCF 2019]

Benign terminations associated with
Jedge DEtWEEN 2 2Nd 5.

Bad terminations happen at any qqqe.

Large MHD burst probably not always
a current-limit instability

The normalized growth rate of the
instability dB,,/dt Is better correlated
to the impurity content or the impact
severity compared to the magnitude of
the instability UB,,,/B,,

A fast, rather long MHD instability is
correlated with benign terminations.
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Hollow current profile {(79,,

A Current profile before the final collapse: evidence of a hollow
profile from SOFT simulations

A Reconstructions of the measured IR synchrotron emission
A Best match between the measurement and the simulations:
A Pitch angle between 0.1 and 0.3

A RE energy < 15 MeV
A Hollow current profile

Experiment - IR camera Hollow, rfa=0.7 Flat Very peaked

ofi-N-

Hollow, rfa=0.5 Parabolic Double hollow

offiolo

#95135

(3¢ 3.5 um] »

Hollow profile: key ingredient to
benign terminations? C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021




Characterization of the instability @)
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A Magnetic islands are visible in synchrotron pictures before the collapse

jpn = 95135, t0=48.662000 s, nfit = 256, fstep = 32
T T T T

RawMirnov signals |—% ||
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A Two m=5 patterns visible, one moving
iInwards

A m=4 pattern at 0.35 normalized radius
C very likely to be the inner m=4 island

A n=1 most probable mode from Mirnov
analysis
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Jorek MHD simulations

A Using the g-profile determined above, MHD simulations of the final
Instability were made with Jorek.

A Instability governed by a double tearing mode on both g=4 surfaces

A Destruction of the entire confinement in ~100 ps
A Compatible with the experimental timescale (10-20 ps)

A 95% of REs lost to the wall through stochastization.

measured

[

Joreksimulationsconfirm
REossesand the

v pandan e timescaleof the collapse
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